Toxicity of Ag to aquatic plants drives Ag fate Benjamin P. Colman¹, Curtis J. Richardson², Emily S. Bernhardt¹

DBI-1266252

EF-0830093

E

Colman et al. 2014 ES&T

¹Biology, Duke University, ²Nicholas School, Duke University

TiO₂ NP Photocatalyzed Degradation of Benzo(a)pyrene

A. Bone¹, R. Di Giulio¹

¹Nicholas School of the Environment, Duke University

Objective: Determine the effects of photocatalytically degrading benzo(a)pyrene (BaP) using $TiO_2 NP$ on toxicity of BaP to embryonic zebrafish.

- Solutions of BaP photocatalytically degraded with TiO₂ NPs are more toxic to embryonic zebrafish than unilluminated BaP. However, this toxicity is dependent on the presence of DMSO as a carrier solvent. (A)
- While the production of hydroxyl radical by illuminated TiO₂ NPs is assumed to be the driver of increased degradation and thus more toxic degradation products; in the presence of DMSO production of hydroxyl radical is in fact quenched and is thus the increased toxicity seen is not due to DMSO increasing hydroxyl radical production.

DBI-1266252 EF-0830093

Nanocomposite Foams

J. Osterberg¹, M. Wiesner², R. Di Giulio¹ ¹Nicholas School of the Environment, Duke University, ²Department of Civil and Environmental Engineering, Duke University,

Nanoparticle Impacts on Wastewater Microbial Functions and Communities

Carley Gwin¹, Claudia Gunsch¹

¹Department of Civil and Environmental Engineering, Duke University

Tracking and characterizing cerium from a commercial diesel additive to exhaust to simulated environments

James Dale¹, Linsey Marr², Michael F. Hochella, Jr.¹

EF-0830093 **C**

²Department of Civil and Environmental Engineering, Virginia Tech

How fresh water facilities remove metals from drinking water: Seeking the mechanism at the nanoscale

Michel Vargas¹, Gary Hinds², William Knocke², Michael Hochella³, Mitsu Murayama¹ Department of ¹Materials Science and Engineering, ²Civil and Environmental Engineering, ³Geosciences,

Virginia Tech

Classical Macro-scale based view: an anthracite coal filter media from a water treatment plant in Newport News, VA, showing growth ring-like surface layers after long-time exposure. The dark/bright layers are believed to result from Mn/Al enrichment, respectively.

What we found so far: Mn and Al interact strongly, forming multicomponent surface layers on filter media containing MnO_x nanoparticles and nanosized (Mn,Al)-O

- Nanoparticles and nano-scale interactions likely play the key role in the formation and the ٠ chemical behavior of transition metal oxide surface layers in water filtration systems.
- The media's properties seem to be a critical factor in the $MnO_{v}(s)$ surface formation mechanism.
- This is contrary to the generally accepted "uniform film-like" surface layer description.

amorphous flakes.

Nanoparticles as a sink for emerging organic contaminants (EOCs) in the Yangtze Estuary, China

Yi Yang ^{1,2}, Caixia Yan ², Michael F. Hochella Jr. ¹

¹ The Center for NanoBioEarth, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA ² State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanhgai, China

Effects of natural organic matter properties on the dissolution kinetics of ZnO NPs

Chuanjia Jiang¹, George R. Aiken², Heileen Hsu-Kim¹ ¹Duke University, Department of Civil & Environmental Engineering. ²US Geological Survey

- Dissolution kinetics of ZnO NPs monitored by anodic stripping voltammetry (ASV).
- Dissolution rate constant (k_{obs}) related to equilibrium dissolved zinc concentration ([Zn]_{T,eq}) in a linear fashion for the different NOM isolates.
- k_{obs} is positively correlated with Specific UV Absorbance (SUVA) of NOMs, an indicator of aromatic carbon content.

CEINT Creates New Middle School Student Engineers Network-Strengthening Opportunities in Research (SENSOR) Saturday Academy

What? Hands-on education/mentoring program to encourage careers in science and engineering by engaging underrepresented minority (URM) 8th grade students in water quality testing and sensor applications to CEINT mesocosm samples and CEINT curriculum: *Welcome to NanoScience: Interdisciplinary Environmental Explorations, Grades 9–12*

Goals? •Introduce students to careers in engineering and research

- •Teach engineering design by sensor applications & math exercises
- •Create network to support pursuit of degrees in science and engineering

Who? 8th grade URM students. Mentors include CEINT graduate and undergraduate students led by PI: Dr. Adrienne Stiff-Roberts and Co-PI: Dr. Glenda Kelly

When? 12 Saturday sessions (Sept.- May 2014-16)

Where? Duke University campus plus field trip to Duke Marine Laboratory

2008-14 CEINT Impacts Educational Infrastructure

- > 20 new courses + 35 modified to infuse CEINT research across 6 universities
- > 364 seminars and colloquia
- IGERT is creating core curriculum
 - "Educating at the Interface: Nanotechnology-Environmental Effects & Policy"
 - 2 new courses taught by distance learning across 3 universities
- Center-wide REU renewed 2014 creates international network for undergraduates
 - Duke, Virginia Tech, Carnegie Mellon and the CEREGE in France
 - 17 faculty mentors
 - >90% REU seniors accepted into 1st choice graduate programs science or engineering
 - Cross site integration- videoconferencing, student created websites & collaboratories
 - Virtual presentations link US students with international collaborators
- CEINT Scholars Steering Committee (CSSC) creates student/postdoc training network

Effect of Shape on Toxicity of AgNPs

D. Gorka¹, J. Osterberg³, B. Colman², J. Meyer³, R. Di Giulio³, E. Bernhardt², J. Liu¹

¹Department of Chemistry, Duke University, ²Department of Biology, Duke University, ³Nicholas School of the Environment, Duke University

Modeling Nanosilver Transformations in Sediments

Amy Dale^{1,2}, Gregory Lowry¹, Elizabeth Casman²

(100% Ag_2S) within a year of entering sediments.

¹Department of Civil and Environmental Engineering, Carnegie Melon University; ²Department of Engineering and Public Policy, Carnegie Melon University

2013, 47, (22), 12920-12928.

Measuring Bioavailability of Ag Nanoparticles in Plants with X-ray Absorption Spectroscopic (XAS) imaging

John Stegemeier¹, Ben Colman², Fabienne Schwab², Emily Bernhardt², Greg Lowry¹ ¹Carnegie Mellon University, ²Duke University

Alfalfa root

Ag XAS map of roots exposed to Ag(0) NPs

X-ray based speciation shows transformation of metallic silver NPs into a silver sulfide species

Sulfidation is a Key Environmental Fate Process for ZnO, CuO, and Ag Nanoparticles

Clement Levard (CEREGE), Gordon E. Brown, Jr. (Stanford), Jason Unrine (Kentucky), Gregory V. Lowry (CMU)

Fate and toxicity will be that of the metal sulfide or metal phosphate products rather than the initial pristine nanomaterial.

Properties of Natural Organic Matter that Govern Its Effects on Gold Nanoparticle Aggregation

Stacey M. Louie¹, Eleanor Spielman-Sun², Robert D. Tilton¹, Gregory V. Lowry¹ ¹Carnegie Mellon University, Pittsburgh, PA 15213; ²Oberlin College, Oberlin, OH 44074

Importance of the heterogeneity of each natural organic matter (NOM) sample

 Gold nanoparticle (NP) aggregation is sensitive to the presence of high molecular weight (MW) components, which stabilize the NPs against aggregation

Importance of variability among NOM sources

• MW distribution of the NOM explains NP aggregation behavior for some, but not all, of the NOM samples tested

Implications

 Quantitative prediction of NP fate and transport will require detailed knowledge of the physicochemical heterogeneity of the NOM in the environment of interest

Louie, S.M.; Tilton, R.D.; Lowry, G.V. Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. *Environmental Science and Technology* **2013**, *47*, 4245.

Exposure to and Transformations of Nanomaterials in Air

Marina Quadros, Andrea Tiwari, Eric Vejerano, Linsey C. Marr

Department of Civil and Environmental Engineering, Virginia Tech

Levels of silver to which children may potentially be exposed during use of selected consumer products is predicted to be low, and bioavailable silver is expected to be in ionic rather than particulate form.

Incineration of waste containing nanomaterials v. their bulk counterparts produces ~6 times more PAHs. Chlorinated furans are formed at elevated concentrations with waste containing nanosilver and TiO_2 . Aerosolized C_{60} exposed to environmentally relevant concentrations of O_3 produces $C_{60}O$, $C_{60}O_2$, $C_{60}O_3$ and other Ocontaining species on the aerosol surface. Oxidative stress as measured by the DCF assay is higher.

Quadros et al. (2013). Release of silver from nanotechnology-based consumer products for children, ES&T, 47(15), 8894-8901. Vejerano et al. (2013). Emissions of polycyclic aromatic hydrocarbons, polychlorinated dibenzo-pdioxins, and dibenzofurans from incineration of nanomaterials, ES&T, 47(9), 4866-4874. Tiwari et al. (2014). Oxidation of C_{60} aerosols by atmospherically relevant levels of O_3 , ES&T, in press, doi:10.1021/es4045693.

Environmental fate and transport of CeO₂ nanoparticles in stream mesocosms

Leanne Baker¹, Ryan S. King¹, Greg Lowry², Jason Unrine³, and Cole W. Matson¹ ¹Baylor University, ²Carnegie Mellon, ³University of Kentucky

н

Press Addition 10 mg/L CeO₂ NP

DBI-1266252 EF-0830093

H.

Ħ

• Pulse and press additions result in significantly different patterns of NP deposition

Water flow

Toxicity of Ag Nanoparticles is from Dissolved Ag Species for four Test Organsims

Clement Levard (CEREGE), Joel Meyer (Duke), Ben Colman (Duke), Emily Bernhardt (Duke), Mark Wiesner (Duke), Rich DiGuilio (Duke), Gordon E. Brown, Jr. (Stanford),

Gregory V. Lowry (Carnegie Mellon)

EF-0830093 CE

Biological and Chemical Responses of Egeria densa to Acute and Chronic Doses of Nanosilver

Curtis J. Richardson', Lin Yuan', and Mengchi Ho'

We carried out bioassays to determine to what degree the plant tissues are damaged and its defense systems are being activated.

- peroxidase (POD)
- superoxide dismutase (SOD)
- malondialdehyde (MDA)
- chlorophyll a and b

Four treatments, in addition to controls, with 3 replicates each of pulse Ag⁰–GA (6 nm), chronic Ag⁰–GA (6 nm), Ag₂S–GA (26 nm), and Au⁰–GA (36 nm) were established to test the biological and chemical responses of *Egeria densa*.

• Ag₂S–GA resulted in the smallest areal cover of *Egeria* (an analog to biomass) in the mesocosm, whereas all other treatments are not discernible from the control.

• *Egeria* tissue Ag content for the pulse addition peaked over other treatments in the first few days as expected. Ag contents under chronic addition of Ag⁰–GA surpasses that under pulse treatment of Ag⁰–GA after 30 days of exposure. The larger particle Ag₂S–GA treatment appeared to reach saturation in <5 days.

¹ Duke University Wetland Center, Nicholas School of the Environment, Durham, NC. USA ² Visiting from State Key Laboratory of Estuarine and Coastal Research, ECNU, Shanghai, China

Influence of coating, sewage sludge amendment and aging on fate of Ag NPs in soil

Whitley, AR¹; Levard, C²; Oostveen, E; Bertsch, PM¹; Matocha, CJ¹; vd Kammer, F¹; Unrine, JM¹ ¹Plant and Soil Sciences, University of Kentucky, ²CEREGE, France

- Without sludge amendment, coating has profound impact on partitioning of Ag nanoparticles (NPs) to pore water, but when introduced through sewage sludge there is little effect of coating.
- Far more colloidal Ag when sludge spiked with Ag NP than with AgNO₃.

Whitley, AR; Levard, C; Oostveen, E; Bertsch, PM; Matocha, CJ; vd Kammer, F; Unrine, JM*. 2013. Behavior of Ag nanoparticles in soil: Effects of particle surface coating, aging and sewage sludge amendment. Environmental Pollution. 182: 141-149.

Raman Based Tracking of Gold Nanoparticle Aggregation and Transport

Matthew Chan and Dr. Peter Vikesland

Department of Civil and Environmental Engineering. Virginia Tech

Research objectives:

- 1. Develop a novel, Raman based protocol to track the aggregation and transport of gold nanoparticles in porous media.
- 2. Once fully developed this protocol will be used to examine how changes in salt identity, nanoparticle size, and porous media structure and composition alter transport.

0 mM NaCl

Quartz packed-bed filled with glass beads, <u>AuNP</u> aggregates, and <u>NaCl</u> Silica

Increase [NaCl]; Increase AuNPs Aggregation

By stacking all the images, we can interpolate a 3D projection of the packed-bed interior

3 mM NaCl

10 mM NaCl

100 mM NaCl

"Green" Synthesis of Gold Nanoparticles: Mechanistic Studies and Life Cycle Assessment

Paramjeet Pati¹, Dr. Peter Vikesland¹, Dr. Sean McGinnis²

¹Department of Civil and Environmental Engineering, ²Department of Materials Science and Engineering, Virginia Tech

DBI-1266252 EF-0830093

Heterogeneous Attachment Efficiency: Batch measurements in environmental matrices

Lauren Barton¹, Mathieu Therezien¹, Mark Wiesner¹

- Distribution coefficient $\gamma(t)$ measured from batch experiments.
- Attachment efficiency α_{hetero} calculated from slope at the early aggregation stages.

DBI-1266252 / EF-0830093

SERENADE 11-LABX-0064 C E

¹ Department of Civil and Environmental Engineering, Duke University

Nanoparticle Uptake Pathway Identification and Characterization in Plant Cells

Using Transmission Electron Microscopy (TEM), µ-X-Ray Analysis, Hyperspectral Imaging

F. Schwab¹, S. Marinakos¹, W. Liu², M. Auffan^{1,2}, C. Levard², B. P. Colman¹, E. S. Bernhardt¹, J.-Y. Bottero, M. Wiesner¹

¹ Duke University, Civil & Environmental Engineering Department / Biology Department, USA ² Centre de Recherche et d'Enseignement de Géosciences de l'Environnement (CEREGE), France

Schwab et al., manuscripts in prep.

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

