
TiO2 NP Photocatalyzed Degradation of Benzo(a)pyrene Increases 
Toxicity to Zebrafish 

A. Bone1 and R.T. Di Giulio1 

Solutions of BaP 
photocatalytically degraded 
with TiO2 NP (1ppm) induced 
more PAH-related toxicity 
and exposure than solutions 
of BaP exposed to UV alone, 
or unilluminated BaP. 
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Objective: Determine effect of photocatalytically degrading benzo(a)pyrene using TiO2 NP on larval zebrafish. 
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At higher levels of TiO2 NP (>2 ppm), mortality is seen only in these solutions.  No mortality occurs in any 
other treatments (B). Mortality is dose-responsive to both BaP and TiO2 NP concentrations. 
Increased toxicity is likely due to production of a more toxic BaP daughter product.  Chemical analysis of 
degradation products is underway. 
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Environmental Transport & Transformations: 
Nano Examples from Natural and Engineered Highly Complex (Real) Environments 
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Nano Titanium Dioxide (TiO2) in Sewage Sludge and 
Sewage-Amended Soils	


Amorphous iron 
(oxyhydr)oxides coated 
with amorphous silica 

Particles grow, goethite 
nanoneedles form from 

surface 

Agricultural Soils  

TiO2 Nanoparticles (NPs) Production & Use 

Terrestrial Environment 
           Agricultural Soils  

8 weeks incubation in the field after soils 
amended with Ag NPs-spiked sewage 
sludge materials.	


Sewage Treatment Plant 
 Sewage Sludge Products 

TiO2 NPs from sewage sludge products 
interact with Ag and then enter the 
environment as a soil amendment.	


TiO2 NPs were repeatedly identified across the 
sewage sludge types tested.  
 
They have faceted shapes with the rutile crystal 
structure, and typically form small, loosely 
packed aggregates.	
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Silver Nanoparticles affect Drosophilia 
Najealicka Armstrong, Malai Ramamoorthy, Delina Lyon, Kimberly Jones, Atanu Duttaroy 

Department of Civil and Environmental Engineering, Howard University 
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AgNPs interfere with Cu-dependent 
enzymes, affecting biological 
processes in the fruit flies.   

Armstrong N, et al,(2013) PLoS ONE 8(1): e53186. doi:
10.1371/journal.pone.0053186 



Attachment Efficiency: 
 Predicting ENM transport and attachment 

Delina Lyon1, Shihong Lin2, Stacey Louie3, Ricardo Charles1, Greg Lowry3, 
Mark Wiesner2, Kimberly Jones1 
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•  Attachment efficiency, α, can be used to predict NP transport in the 
environment by using compositional weighted averaged α values.  

•  Models/theories can be developed to predict α for ENMs and 
coated ENMs. 

1 Department of Civil and Environmental Engineering, Howard University 
2 Department of Civil and Environmental Engineering, Duke University 
3 Department of Civil and Environmental Engineering, Carnegie Mellon University 
 

 
 
 



Modeling Nanosilver Transformations in Freshwater Sediments 

•  Due to their tendency to aggregate, nanomaterials are 
expected to accumulate in the sediments of aquatic 
systems, where they will undergo chemical 
transformations that will affect their toxicity as well as 
their mobility. 

•  We have developed a 1-dimensional diagenetic model 
for nano-silver speciation and distribution in freshwater 
sediments and calibrated it to CEINT mesocosm data.  

•  This model will be part of an integrated fate and transport 
model for nanomaterials to be used in environmental risk 
assessment and will enable the formulation of science-
based policy for the regulation of nanomaterials. 

 
 
 
 
 

Amy L. Dale, Gregory V. Lowry, Elizabeth A. Casman (in preparation)  “Modeling Nanosilver Transformations in Freshwater Sediments.” 
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1  Department of Engineering and Public Policy, Carnegie Mellon 

University 
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Mellon University  
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Meta-Analysis of in vivo pulmonary toxicity studies 

Machine learning techniques 
produce models relating 
nanoparticle properties and 
experimental conditions to 
indicators of pulmonary toxicity. 
 
 

 
 
 
 
 
 

Insights gained from these 
models test hypotheses relating 
to nano-particle-specific causes 
of pulmonary toxicity. 
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Jeremy Gernand and Elizabeth Casman (in review) “A meta-analysis of carbon nanotube pulmonary toxicity studies – how 
physical dimensions and impurities affect the toxicity of carbon nanotubes. Risk Analysis 
 

Jeremy Gernand and Elizabeth Casman 
Department of Engineering and Public Policy, Carnegie Mellon University   
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BAL-LDH Response to Metal Oxide* NPs 
    R2 = 0.97  

         Results facilitate the 
quantitative comparison of 
factors contributing to 
toxicity across studies and 
elucidate the interactions 
between such factors. 

 

Interaction of CNT diameter and CNT dose  

* TiO2, CeO2, Fe2O3, MgO, NiO, SiO2, ZnO 
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Toxicogenomic Effects of Au-NPs on C. elegans 
O. Tsyusko, J.  Unrine, D. Spurgeon, E. Blalock, M. Tseng, D. Starnes, and P. Bertsch 

Department of Plant and Soil Sciences, University of Kentucky  
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Tsyusko et al. ES&T 2012 46: 4115 

•  Demonstrated that rme-2 from the endocytosis pathway is 
involved in Au-NP uptake 

•  Genes from a C. elegans –specific UPR pathway, such as 
pqn-5, plays a role in detoxification of Au-NPs  
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Trophic Transfer Enhances Bioavailability of Au Nanoparticles 
J. Unrine, O. Zhurbich, A. Shoults-Wilson, O. Tsyusko and P. Bertsch 

Department of Plant and Soil Sciences, University of Kentucky  
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Unrine et al. ES&T 2012 46: 9753 

•  Demonstrated trophic transfer 
of Au nanoparticles. 

•  Showed that trophic transfer 
enhances bioavailability of 
nanoparticles. 

•  Modeled concentrations over 
lifespan of predator using a 
biodynamic model. 



Fate and Transport of Nano TiO2 at Expected 
Environmental Concentrations 

Ricardo Charles, Delina Lyon, Kimberly Jones 
Department of Civil and Environmental Engineering, Howard University 
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Batch and column studies allow investigation of TiO2 
attachment at low concentrations (~100 ppb).  



NISE Net invites CEINT Associate Director to highlight museum-university partnerships  
 CEINT Partnered with NISE Net since 2009-  3 national museum partners 
 Over 17,000 visitors to CEINT partner museums: NanoDays 2009-13 
 NanoDaysè NanoNightsè  Nano Campsè Science Cafesè Educational Video 
 Field trips for museum educators to CEINTèPartner on new Museum grants   

Benefits of Museum Partnerships to University Research Center 
 Interested audiences -broad engagement- network facilitates national expansion 
 NISE Net templates help students pitch level for science translation 
 CEINT students value learning science translation 
 Activities demo CEINT research for broad, continuing  use 

 Allows  more depth face-to-face public engagement: 
 What  roles do microbes play in the environment?  
 How could nanoparticles influence those roles? 
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 CEINT-NISE Net Partnership- Highlighted as Model 

                  CEINT Video on NISE Net Website  
               Does Every Silver Lining Have a Cloud?        Do coatings change where nanoparticles go? 

     

Why are medaka used in CEINT research? 
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Gold NPs with Positive or Negative Charge 
Synthesized to explore the effect of surface charges on transport, transformations, 

biouptake and toxicity 
Stella Marinakos and Jie Liu 

Department of Chemistry, Duke University 
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Environmental properties are at least as important as nanomaterial 
properties in assessing behavior and effects 

Ben P. Colman1, Emily Bernhardt1, Jason M. Unrine2, Audrey J. Bone1, Rich Di Giulio1, Paul Bertsch2, Cole W. 
Matson3, Mark R. Wiesner1, and Gregory V. Lowry4 

1Duke University, 2University of Kentucky, 3Baylor University, 4Carnegie Mellon University  
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Research must identify macroscopic behavior of nanomaterials in representative environments 
(e.g. transformations), and the impacts of those behaviors on observed effects. 
 

Resulting sulfidation of 
AgNPs dramatically 
decreases toxicity 

Organic carbon level in 
sediment controls Ag NP 
sulfidation and Ag+ efflux 
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Darkfield Hyperspectral Imaging Microscopy: 
Nanoparticle Characterization and Analysis in Complex (Real) Environments 

Appala Raju Badireddy1, Jie Liu2 and Mark R. Wiesner1   

AgNPs in ultrapure water AgNPs in mesocosm water AgNPs in wastewater water 

Type of coating affects the hydrodynamic size of AgNPs 

Bundled carboxylated-carbon 
nanotubes in synthetic water AgNPs in the gut of C. elegans 

1 Department of Civil and Environmental Engineering, Duke University 
2 Department of Chemistry, Duke University  NSF EF-0830093 



Modeling the Environmental Release, Transport, Transformation and 
Biouptake of Nanomaterials: An Integrated Center-wide Initiative  

Christine O. Hendren1, Lauren E. Barton1, Paul M. Bertsch2, Elizabeth Casman3, Amy L. Dale3, Gregory V. 
Lowry3, Mathieu Thérézien1, Jason M. Unrine2, and Mark R. Wiesner1 

1Duke University, 2University of Kentucky, 3Carnegie Mellon University  
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