
Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (*Medicago* sativa)

John Stegemeier¹, Fabienne Schwab², Ben Colman², Gregory V. Lowry¹

¹Carnegie Mellon University, Pittsburgh, PA ²Duke University, Durham, NC

Experimental Setup

- Alfalfa sprouts were exposed hydroponically to three Ag treatments: suspensions of Ag⁰ and Ag₂S nanoparticles and the control, AgNO₃
- Root tips were examined using Synchrotron-based X-ray Fluorescence (XRF) and Transmission Electron Microscopy (TEM)
- Silver specific XRF maps were generated to visualize the distribution of Ag in the plant tissue while TEM was used to identify dense particles in the cell walls.

Silver specific XRF maps Alfalfa root tips An unexposed alfalfa root is shown (1st) Ag is pervasive in the AgNO₃ exposure (2nd) Ag is more discrete in Ag⁰ and Ag₂S NP treatments (3rd and 4th column, respectively)

Major Results

- Silver accumulated similarly in/on the roots of alfalfa plants for Ag
 ⁺ and Ag⁰ & Ag₂S nanoparticles.
- Distribution and speciation of Ag in the roots was different of Ag NPs compared to Ag ions.

Implications:

- The low solubility of the Ag₂S NP does not prevent the uptake and translocation throughout plant tissue.
- This suggests Ag solubility, although directly related to toxicity, may not predict the fate of these NPs exposed to plants.

Stegemeier, J.P.; Schwab F.; Colman, B.P.; Webb, S.; Newville, M.; Lanzirotti, A.; Winkler, C.; Wiesner, M.; Lowry, G.V. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (*Medicago* sativa). Environmental Science and Technology Submitted - 2015,

