Cerium Oxide Nanoparticles are More Toxic than Equimolar Bulk Cerium Oxide in Caenorhabditis elegans

TitleCerium Oxide Nanoparticles are More Toxic than Equimolar Bulk Cerium Oxide in Caenorhabditis elegans
Publication TypeJournal Article
Year of Publication2013
AuthorsArnold, MC, Badireddy, AR, Wiesner, MR, Di Giulio, RT, Meyer, JN
JournalArchives of Environmental Contamination and Toxicology
Volume65
Issue2
Pagination224 - 233
Date Published08/2013
ISSN1432-0703
Abstract

Engineered cerium oxide nanoparticles (CeO2 NPs) are widely used in biomedical and engineering manufacturing industries. Previous research has shown the ability of CeO2 NPs to act as a redox catalyst, suggesting potential to both induce and alleviate oxidative stress in organisms. In this study, Caenorhabditis elegans and zebrafish (Danio rerio) were dosed with commercially available CeO2 NPs. Non-nano cerium oxide powder (CeO2) was used as a positive control for cerium toxicity. CeO2 NPs suspended in standard United States Environmental Protection Agency reconstituted moderately hard water, used to culture the C. elegans, quickly formed large polydisperse aggregates. Dosing solutions were renewed daily for 3 days. Exposure of wild-type nematodes resulted in dose-dependent growth inhibition detected for all 3 days (p < 0.0001). Non-nano CeO2 also caused significant growth inhibition (p < 0.0001), but the scale of inhibition was less at equivalent mass exposures compared with CeO2 NP exposure. Some metal and oxidative stress-sensitive mutant nematode strains showed mildly altered growth relative to the wild-type when dosed with 5 mg/L CeO2 NPs on days 2 and 3, thus providing weak evidence for a role for oxidative stress or metal sensitivity in CeO2 NP toxicity. Zebrafish microinjected with CeO2 NPs or CeO2 did not exhibit increased gross developmental defects compared with controls. Hyperspectral imaging showed that CeO2 NPs were ingested but not detectable inside the cells of C. elegans. Growth inhibition observed in C. elegans may be explained at least in part by a non-specific inhibition of feeding caused by CeO2 NPs aggregating around bacterial food and/or inside the gut tract.

URLhttp://link.springer.com/content/pdf/10.1007%2Fs00244-013-9905-5.pdf
DOI10.1007/s00244-013-9905-5
Short TitleArch Environ Contam Toxicol