Interaction of Zn(II) with Hematite Nanoparticles and Microparticles: Part 2. ATR-FTIR and EXAFS Study of the Aqueous Zn(II)/Oxalate/Hematite Ternary System

TitleInteraction of Zn(II) with Hematite Nanoparticles and Microparticles: Part 2. ATR-FTIR and EXAFS Study of the Aqueous Zn(II)/Oxalate/Hematite Ternary System
Publication TypeJournal Article
Year of Publication2009
AuthorsHa, J, Trainor, TP, Farges, F, Brown, Jr, GE
JournalLangmuir
Volume25
Issue10
Pagination5586 - 5593
Date Published05/2009
ISSN1520-5827
Abstract

Sorption of Zn(II) to hematite nanoparticles (HN) (av diam = 10.5 nm) and microparticles (HM) (av diam = 550 nm) was studied in the presence of oxalate anions (Ox2−(aq)) in aqueous solutions as a function of total Zn(II)(aq) to total Ox2−(aq) concentration ratio (R = [Zn(II)(aq)]tot/[Ox2−(aq)]tot) at pH 5.5. Zn(II) uptake is similar in extent for both the Zn(II)/Ox/HN and Zn(II)/Ox/HM ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)]tot < 4 mM, whereas it is 50−100% higher for the Zn(II)/Ox/HN system than for the Zn(II)/Ox/HM ternary and the Zn(II)/HN and Zn(II)/HM binary systems at [Zn(II)(aq)]tot > 4 mM. In contrast, Zn(II) uptake for the Zn(II)/HM binary system is a factor of 2 greater than that for the Zn(II)/Ox/HM and Zn(II)/Ox/HN ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)]tot < 4 mM. In the Zn(II)/Ox/HM ternary system at both R values examined (0.16 and 0.68), attenuated total reflectance Fourier transform infrared (ATR-FTIR) results are consistent with the presence of inner-sphere oxalate complexes and outer-sphere ZnOx(aq) complexes, and/or type A ternary complexes. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopic results suggest that type A ternary surface complexes (i.e., >O2−Zn−Ox) are present. In the Zn(II)/Ox/HN ternary system at R = 0.15, ATR-FTIR results indicate the presence of inner-sphere oxalate and outer-sphere ZnOx(aq) complexes; the EXAFS results provide no evidence for inner-sphere Zn(II) complexes or type A ternary complexes. In contrast, ATR-FTIR results for the Zn/Ox/HN sample with R = 0.68 are consistent with a ZnOx(s)-like surface precipitate and possibly type B ternary surface complexes (i.e., >O2−Ox−Zn). EXAFS results are also consistent with the presence of ZnOx(s)-like precipitates. We ascribe the observed increase of Zn(II)(aq) uptake in the Zn(II)/Ox/HN ternary system at [Zn(II)(aq)]tot ≥ 4 mM relative to the Zn(II)/Ox/HM ternary system to formation of a ZnOx(s)-like precipitate at the hematite nanoparticle/water interface.

DOI10.1021/la802895a
Short TitleLangmuir